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We discuss a general approach for chaotic synchronization of dynamical systems that is based on an
active-passive decomposition~APD! of given dynamical systems. It is shown how this approach can be used
to construct high-dimensional synchronizing systems in a systematic way using low-dimensional systems as
building blocks. Furthermore, two methods for encoding messages are considered that are both based on
synchronization. Using these methods the quality of the reconstructed information signal is higher and the
encoding is more secure compared to other encryption methods based on synchronization. The main ideas are
illustrated using experimental and numerical examples based on continuous and discrete dynamical systems.

PACS number~s!: 05.45.1b, 43.72.1q, 47.52.1j

I. INTRODUCTION

Synchronization of periodic signals is a well-known phe-
nomenon in physics, engineering, and many other scientific
disciplines. However, even chaotic systems may be linked in
a way such that their chaotic oscillations are synchronized.
In particular the case of one directional coupling has been
investigated very intensely during the last years@1–5# be-
cause of its potential application in communication systems
@6–17#. There, an information signal containing a message is
transmitted using a chaotic signal as a broadband carrier and
the synchronization is necessary to recover the information
at the receiver. Different implementations of this basic idea
have been suggested. For example, in Refs.@8,9,11# the in-
formation signal is added to the chaotic signal and in Refs.
@8,10# a parametric modulation is used for the transmission
of digital signals. Other approaches to use chaotic dynamics
for communication include controlling techniques to encode
binary messages@18# and methods that make use of the
quick decay of the correlation function for chaotic signals
@19#.

In this paper we discuss a general approach for construct-
ing synchronizing chaotic dynamical systems and two im-
proved methods for encoding messages using chaotic syn-
chronization@12–16#. The basic idea of the synchronization
approach consists in a decomposition of a given~chaotic!
system into an active and a passive part, where different
copies of the passive part synchronize when driven by the
same active component. The general description of this
active-passive decomposition~APD! and some examples for
illustration are given in Sec. II A. The relation of this ap-
proach to the most important methods for controlling chaos
and for synchronization is discussed in Sec. II B. In Sec. III
we show how synchronization may be used to encode mes-
sages in a dynamical way where the information is not just
added to some chaotic carrier but drives the dynamical sys-
tem of the transmitter. Such a dynamical modulation yields
more secure encoding and may also be used to avoid the
typical distortion errors that occur for almost all previous
communication schemes based on synchronization@8,9#.
Two different encoding-decoding schemes are discussed. The
method used in Sec. III A enables an exact reconstruction of

the information signal whereas the autosynchronization ap-
proach presented in Sec. III B may lead to implementations
that are more robust with respect to noise. For both methods
numerical and experimental~analog computer! examples are
given that are based on an APD of the well-known Ro¨ssler
system. Section III C contains a comparison of the APD-
based encoding methods with other encryption methods
based on synchronization. In Sec. IV we demonstrate how
active-passive decomposition may be used to construct sys-
tematically high-dimensional systems with hyperchaotic at-
tractors that are very useful for private communication. A
realization of the APD and the exact encoding method in the
context of discrete dynamical systems is given in Sec. V.
There we use as an example a random number generator for
encoding an information signal. In this case the chaotic car-
rier is very high dimensional and difficult to decode without
the knowledge about the dynamical system used.

II. SYNCHRONIZATION OF CONTINUOUS SYSTEMS

In this section the basic concept and some terminology
are introduced using continuous dynamical systems. The
generalization to discrete systems is straightforward and will
be discussed in Sec. V.

A. Constructing synchronizing systems by active-passive
decomposition

Consider an arbitraryN-dimensional~chaotic! dynamical
system

ż5F~z!. ~1!

The goal is to rewrite this autonomous system as a nonauto-
nomous system that possesses certain synchronization prop-
erties. Formally, we may write

ẋ5f~x,s!, ~2!

wherex is the new state vector corresponding toz ands is
some vector valued function of time given by

s5h~x! ~3!
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or

ṡ5h~x,s!. ~4!

The pair of functionsf andh constitutes a decomposition of
the original vector fieldF ~see also the example that fol-
lows!. The crucial point of this decomposition is that for
suitable choices of the functionh any system

ẏ5f~y,s! ~5!

that is given by thesamenonautonomous vector fieldf, the
samedriving s, but differentvariablesy, synchronizes with
the original system~2!, i.e., ix2yi→0 for t→`. More pre-
cisely, synchronization of the pair of~identical! systems~2!
and~5! occurs if the dynamical system describing the evolu-
tion of the differencee5y2x,

ė5f~y,s!2f~x,s!5f~x1e,s!2f~x,s!,

possesses a stable fixed point at the origine50. In some
cases this can be proved using stability analysis of the lin-
earized system for smalle,

ė5Df~x,s!•e

or using ~global! Lyapunov functions. In general, however,
the stability has to be checked numerically using the fact that
synchronization occurs if all conditional Lyapunov expo-
nents of the nonautonomous system~2! are negative. In this
case system~2! is a passive system and we call the decom-
position an active-passive decomposition of the original dy-
namical system~1!. The technical notion of conditional
Lyapunov exponents was introduced by Pecora and Carroll
@1# in order to study the synchronization of subsystems. In
the following we will show that the APD provides a unifying
and generalizing framework for their approach and other
methods for synchronizing and controlling of chaotic sys-
tems.

Example: The Ro¨ssler system: As an example for the
active-passive decomposition introduced above we will use
in this paper the well-known Ro¨ssler system

ż1521z1~z224!,

ż252z12z3 , ~6!

ż35z210.45z3 .

An APD of the Rössler vector field is for example given by

ẋ15224x11x2
22sx2 ,

ẋ252x22x31s, ~7!

ẋ35x210.45x3

with

s5x22x1 ~8!

and

ẏ15224y11y2
22sy2 ,

ẏ252y22y31s,

ẏ35y210.45y3 .

In this case the differential equations for the errore5y2x
read

ė1524e11e2~x21y22s!,

ė252e22e3 ,

ė35e210.45e3 .

The decomposition~7!,~8! of the original differential equa-
tion ~6! yields a stablee2-e3 system with complex eigenval-
ues20.2756 iA0.474375. Therefore,e2 ande3 converge to
zero for t→` and the differential equation fore1 may for
this limit be written asė1524e1; i.e., the differencee1 also
vanishes and thex and they systems synchronize. Note that
this proof holds for arbitrary bounded functionss(t). This
feature is of importance for applications in communication
that will be discussed in Sec. III. Other APD’s of the Ro¨ssler
system that yield synchronizing chaotic systems are given in
Table I.

Instead of decomposing a given chaotic system one may
also synthesize it starting from a stable linear system
ẋ5A•x given by some matrixA where an appropriate non-
linear functions5h(x) is added such that the complete sys-
tem

ẋ5A•x1s

is chaotic@13#. It is easy to verify that in this case the error
dynamics is given by the stable systemė5A•e and synchro-
nization occurs for all initial conditions and arbitrary signals
s. In this way synchronized chaotic systems may be designed
with specific features for applications.

B. Comparison with other methods for synchronizing and
controlling of chaos

In the following we briefly discuss the relation of the APD
to other methods for synchronizing and controlling chaotic
systems.

TABLE I. Examples of active-passive decompositions of the
Rössler system~6!. The conditional Lyapunov exponentsl i were
computed with respect to the natural logarithm.

ẋ15224x113(x21x3)1s l1520.08
ẋ252x12x3 s5x1x223(x21x3) l2520.08
ẋ35x210.45x3 l3523.39

ẋ1521x1(x224) l1520.43
ẋ2522x122x31s s5x11x21x3 l2520.52
ẋ35x210.45x3 l3523.15

ẋ1521x1(x224) l1520.12
ẋ252x12x3 s5x3 l2520.22
ẋ35x210.45s l3523.20
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1. The method of Pecora and Carroll

The most popular method for constructing synchronizing
~sub! systems was introduced by Pecora and Carroll@1#.
They decompose a given dynamical system,

u̇5g~u!,

into two subsystems,

v̇5gv~v,w!,

ẇ5gw~v,w!

with v5(u1 , . . . ,uk) and w5(uk11 , . . . ,uN). It can be
shown that any second system

ẇ85gw~v,w8!

that is again given by the same vector fieldgw , the same
driving v, but different variables w8 synchronizes
(iw82wi→0) with the originalw subsystem if the condi-
tional Lyapunov exponents of thew system are all negative.
The coupling is one directional and thev system and thew
system are referred to as thedrive systemand theresponse
system, respectively. It is easy to see that the APD approach
includes this scheme if we use Eq.~4! with

s ↔ v, h ↔ gv,

x ↔ w, f ↔ gw,

y ↔ w8.

However, in the case of Pecora-Carroll synchronization only
a finite number of possible decompositions exists, which is
bounded by the number of different subsystems
N(N21)/2. In general, only a few of the possible response
subsystems possess negative conditional Lyapunov expo-
nents and may be used to implement synchronizing systems.
In the case of the Ro¨ssler system, for example, only the
following decomposition into a drive system,

ṡ5x210.45s, ~9!

and a response system,

ẋ1521x1~x224!,
~10!

ẋ252x12s,

leads to synchronization@1#. On the other hand, with the
more general decomposition discussed in this paper many
different pairs of synchronizing systems may be constructed
~see, for example, Table I!. Therefore, the APD may be
viewed as a generalization of the method of Pecora and Car-
roll that leads to a larger variety of realizations for chaotic
synchronization.

2. The method of Hu¨bler

The method for constructing synchronizing systems by
active-passive decomposition is also related to the control-
ling method introduced by Hu¨bler @20#. Hübler proposed the
following scheme. Let

u̇5E~u!1H ~11!

be some~experimental! system that is driven by some force
H. The task is to defineH such that the dynamics of this
system converges to some goal dynamics that is given by

v̇5G~v!. ~12!

In his work Hübler proposed to use

H5G~v!2E~v!. ~13!

With this choice controlling~i.e., iu2vi→0 for t→`) is
possible if the conditional Lyapunov exponents of Eq.~11!
are all negative. The connection between Hu¨bler’s method
and the APD becomes more clear if we use Eq.~13! to re-
write Eq. ~12! for the goal dynamics as

v̇5E~v!1H5Z~v,H!.

Then Hübler’s method for controlling may be expressed in
the framework of the APD in the following way:

x ↔ v, s,h ↔ H,

y ↔ u, f ↔ Z.

In his original work Hübler admits only additive controlling
forces, but this can of course be generalized to parametric
forces @21#. The main difference between Hu¨bler’s method
and the APD consists in the goals: controlling a given ex-
perimental system versus encoding messages using synchro-
nized systems. For the latter we may freely choose suitable
dynamical systems and decompositions. Even more, the mes-
sage to be encoded drives thex system~see Sec. III!, which
corresponds to a nonautonomous goal dynamics.

3. The method of Pyragas

Finally we would like to mention the controlling method
of Pyragas @22# where some function of the type
c„uj (t)2v j (t)… is added to thej th component of the vector
field u̇5g(u) of the system to be controlled. The parameter
c has to be chosen suitably and the functionv j (t) is, for
example, a prerecorded signal from the unperturbed system
or a second identical systemv̇5g(v). The controlling force
used by Pyragas is a special case of the so-called modified
method of Fujisaka and Yamada@2# that was introduced by
Brown, Rulkov, and Tracy@23#. It differs from Pyragas’
method only in the sense that not only are scalar functions
used for the driving but multidimensional couplings
A(u2v), whereA is some coupling matrix. In general this
kind of feedback controlling method may thus be written as

u̇5g~u!1A~u2v!.

The relation to the APD is given by:

s,x ↔ v,

y ↔ u,

f„x,s) ↔ g~v!1A~v2v!5g~v!,

f„y,s) ↔ g~u!1A~u2v!.

In the previous discussion of synchronization methods, the
function s was assumed to be vector valued in general. For
the examples and in the following, however, we will consider
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only cases with scalar signalss that are most interesting for
practical applications of synchronization in communication.

III. ENCODING INFORMATION SIGNALS

The synchronizing systems obtained using the APD de-
scribed in the previous section may be used to build
transmitter-receiver systems for encoding and masking infor-
mation signals. In the following we describe two methods
that possess different features that may be useful for practical
applications.

A. Exact reconstruction of the information signal

With the first method@12–16# the information signali is
included in the functionh describing the scalar signals. If
h is invertible with respect toi ,

i5h21~x,s,ṡ!,

then the information recovered at the receiver,

i R5h21~y,s,ṡ!,

converges to the original informationi if the transmitter (x
system! and the receiver (y system! synchronize.

To demonstrate the proposed method for encoding mes-
sages experimentally we have implemented the following de-
composition of the Ro¨ssler system~6! on an analog computer
~Telefunken RAT 700!:

transmitter:

ẋ1521x1~x224!,

ẋ252x12x3 , ~14!

ẋ35x22x31s;

transmitted signal:

s51.45x31 i ; ~15!

receiver:

ẏ1521y1~y224!,

ẏ252y12y3 , ~16!

ẏ35y22y31s.

Figure 1~a! shows a typical chaotic oscillation of the experi-
mentally implemented Ro¨ssler system without external infor-
mation signal (i50) and Fig. 1~b! the corresponding power
spectrum. In Fig. 2 the variablex2 of the transmitter is plot-
ted versus the corresponding variabley2 of the receiver for
i50. The resulting curve lies on the diagonal indicating the
synchronization of the transmitter and the receiver. Figure 3
shows the results for a sinusoidal information signal. Neither
in the transmitted signal@Fig. 3~a!# nor in its power spectrum
@Fig. 3~b!# is the sinusoidal information signal easy to detect.
Only a small peak is visible in the spectrum at the frequency
of the sine function, which is not higher than the other peaks
of the chaotic broadband spectrum. Figures 3~c! and 3~d!
show the recovered signali R and its power spectrum, respec-

tively. Note the high signal-to-noise ratio of 40 dB, indicat-
ing a good quality of the reconstruction. Figure 4 shows the
experimental results for a sinusoidal signal with varying fre-
quency, i.e., afrequency sweep. Again the information can-
not be detected in the transmitted signal@Fig. 4~a!# or its
power spectrum@Fig. 4~b!#. The quality of the reconstructed
information signali R @Fig. 4~c!# is for all frequencies quite
good and the corresponding power spectrum@Fig. 4~d!# dif-
fers only for high frequencies from the original spectrum

FIG. 1. Chaotic oscillations of a single experimental Ro¨ssler
system implemented on an analog computer~Telefunken RAT
700!. ~a! Time seriesx1 . ~b! Power spectrum of the time series
shown in~a!.

FIG. 2. Synchronization of the two experimental Ro¨ssler sys-
tems~14!–~16! without information signal. Plotted are the variables
x2 vs y2 .
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~not shown here!. Note that the spectrum of the transmitted
signal@Fig. 4~b!# is very similar to the spectrum of the single
Rössler system shown in Fig. 1~b!. An important feature of
this example is the fact that the spectrum of the information
signal@Fig. 4~d!# and the spectrum of the chaotic oscillations
of the Rössler system@Fig. 1~b!# are located in approxi-
mately the same frequency range. Therefore, it is impossible
to separate them using standard linear filters.

B. Information reconstruction using autosynchronization

The second method for encoding and decoding a message
using chaotic dynamical systems is based onautosynchroni-
zation. Autosynchronization means that the second dynami-
cal system~the receiver! may adapt its parameters to those of
the first system~the transmitter! using an additional feedback
loop. The controlling force of the feedback loop depends on
the signals(t) from the transmitter and an analogous signal
sR(t) that is derived from the state variables of the receiver.
In the case of synchronizations(t) equalssR(t) and the con-
trolling force becomes zero. To illustrate this method we
start from the APD~7!,~8! of the Rössler system given in
Sec. II A. The information signali (t) is injected into the first
equation of the transmitter but isnot included in the trans-
mitted signals(t). The resulting communication scheme can
be summarized as follows:

Transmitter:

ẋ15224x11x2
22sx21 i ~ t !, ~17!

ẋ252x22x31s,

ẋ35x210.45x3 ;

transmitted signal:

s5x22x1 ; ~18!

receiver:

ẏ15224y11y2
22sy21y4 ,

ẏ252y22y31s,

ẏ35y210.45y3 , ~19!

ẏ45a~sR2s!,

wheresR5y22y1 , i R5y4 , anda is a free convergence pa-
rameter. For the differencesek5yk2xk (k51,2,3) and
e45y42 i the following differential equations hold:

ė1524e11e2~x21y22s!1e4 ,

ė252e22e3 ,

ė35e210.45e3 ,

ė45a~sR2s!2di/dt.

FIG. 3. Experimental encoding and decoding of a sinusoidal information signali (t) using the systems~14!–~16!. ~a! Transmitted signal
s(t)51.45x3(t)1 i (t). ~b! Power spectrum of the transmitted signals(t). ~c! Recovered informationi R(t)5s(t)21.45y3(t). ~d! Power
spectrum of the recovered informationi R(t).
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As in example ~7! the e2-e3 subsystem is stable and
e2 ,e3→0. In the limit t→` we thus obtain a two-
dimensional system that may be written as

ė1524e12e4 ,

ė45a~sR2s!2di/dt

or

ë414ė41ae4524
di

dt
2
d2i

dt2
. ~20!

The variablee45y42 i5 i R2 i describing the reconstruction
error is thus governed by the well-known differential equa-
tion ~20! for a damped linear oscillator. If the information
signal is constant (di/dt50) the reconstruction errore4 con-
verges exponentially to zero, oscillating with a frequency
Aa24 if a.4. The error remains small if the information
signal changes only slowly compared to the time scale of the
error dynamics. In principle the error of this example can be
estimated quantitatively using the theory of linear systems. A
numerical example where the information signal is given by
a triangular information signal anda510 is shown in Fig. 5.
This encoding method was also implemented on the analog
computer using the following systems:

Transmitter:

ẋ1521x1~x224!, ~21!

ẋ252x12x3 ,

ẋ35x22x31s1 i ;

transmitted signal:

s51.45x3 ; ~22!

receiver:

ẏ1521y1~y224!,

ẏ252y12y3 ,

ẏ35y22y31s1y4 , ~23!

ẏ45a~s2sR!,

wheresR51.45y3 and i R5y4 . Note that in contrast to the
similar example given in Sec. III A here the transmitted sig-
nal is not a sum of a chaotic signal and the information
signal. Therefore, ifi is, for example, a pure sinusoidal sig-
nal there is no additional peak in the power spectrum ofs
@compare Fig. 3~b!#. Another difference from the method dis-
cussed in Sec. III A is the fact that here the reconstructed
signal i R5y4 follows the variations ofi with some delay or
inertia and is permanently in a transient state. This can best
be seen for a rectangular information signal as shown in Fig.
6. After each change of the signali (t) @Fig. 6~a!# the recon-

FIG. 4. Experimental encoding and decoding of a sinusoidal information signali (t) with periodically varied frequency~frequency sweep!
using the systems~14!–~16!. ~a! Transmitted signals(t)51.45x3(t)1 i (t). ~b! Power spectrum of the transmitted signals(t). ~c! Recovered
information i R(t)5s(t)21.45y3(t). ~d! Power spectrum of the recovered informationi R(t).
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structed information@Fig. 6~b!# needs some time to converge
to the new value. Similar to the first example the transient is
approximately exponential and is given by the time scale of
the error dynamics. In any practical application one should
therefore use a chaotic system that oscillates with frequen-
cies that are~much! higher than the characteristic frequencies
of the information signal. In this case any variation of
y45 i R depends on many oscillations of the transmitted sig-
nal; i.e., the transmission becomes~very! redundant. The re-
dundancy, however, can be exploited to reconstruct the infor-
mation almost exactly and to make the communication more

robust with respect to noise. A more detailed investigation of
this problem will be given elsewhere. Furthermore, it is pos-
sible to use autosynchronization to encode several informa-
tion signals using asinglechaotic carrier@24#.

C. Comparison with other encryption methods based on
synchronization

The APD-based methods for encoding messages using
synchronization differ from previously suggested schemes
@1,8,9,12# in the fact thatthe information is not just added to
a chaotic carrier but also drives the dynamical system con-
stituting the transmitter. This has some important conse-
quences. With the exact encoding method~Sec. III A! the
information can be recovered at the receiver without any
distortion errors. In contrast, if the information signal is just
added to a chaotic signal, the receiver can only generate an
approximation of the original state variables of the transmit-
ter, because its dynamics is also influenced by the added
information signal, which is not the case for the dynamics of
the transmitter. The resulting distortion error vanishes only if
the amplitude of the information signal is very~infinitesi-
mally! small. If, however, the amplitude of the information
signal is very small then it is in general very sensitive to any
noise in the transmission channel. Even worse, the transmit-
ted signal consists in this case mainly of a~low-dimensional!
chaotic signal that can be modeled using time delay embed-
ding and then be subtracted from the transmitted signal to
obtain the information signal. This can be done efficiently
using methods for nonlinear noise reduction@25# where the
information signal is in this case treated as noise. Of course,
such encoding is not very secure and therefore not useful for
private communication. The synchronization and encoding
schemes discussed in this paper try to avoid these drawbacks
because they yield~exact! reconstructions of the information
signal based on a transmitted signal that is more complicated
and high dimensional. Note that also the decomposition of
Pecora and Carroll@Eqs. ~9! and ~10!# can be used in this
sense to implement the improved encoding methods. One
simply may add the information signal to the right-hand side
of Eq. ~9! for example. The receiver then has to generate the
temporal derivativeṡ from s in order to recover the informa-
tion asi R5 ṡ2y11y2 . Another possible application consists
in encoding digital~binary! informations by switching be-
tween different chaotic sources. In contrast to schemes based
on Pecora-Carroll decomposition@10#, with the APD it is not
necessary to use a cascade of two subsystems in order to
verify the synchronization in the receiver. It suffices to com-
pute a new ‘‘transmitted signal’’sR from the state variables
of the receiver and compare it with the actually received
signals.

The practical question of robustness of the synchroniza-
tion with respect to parameter differences and additional
noise will be discussed in detail elsewhere. First simulations
yielded results that are comparable to analogous investiga-
tions for Pecora-Carroll synchronization.

IV. CASCADED SYSTEMS

For encoding messages it is desirable to use high-
dimensional chaotic carriers in order to make the decoding as
difficult as possible. In the following we describe a strategy

FIG. 5. Numerical encoding and decoding of a triangular infor-
mation signali (t) using the communication system~17!–~19!. ~a!
Transmitted signals(t). ~b! Recovered informationi R(t)5y4 . ~c!
Differenceu i (t)2 i R(t)u between the original and the recovered in-
formation signal.

FIG. 6. Experimental encoding and decoding of a rectangular
information signali (t) using the communication system~21!–~23!.
~a! Information signali (t). ~b! Recovered informationi R(t)5y4 .
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to construct systematically high-dimensional synchronizing
systems using low-dimensional building blocks. The idea is
to use the synchronization properties discussed above in a
series or cascade of systems as illustrated in Fig. 7. If all
pairs of systems fA(xA ,sA) –fA(yA ,sA), fB(xB ,sB) –
fB(yB ,sB), fC(xC ,sC) –fC(yC ,sC), etc. synchronize then the
information can be recovered at the receiver as

i R5hA
21~yA ,ŝA!5hA

21
„yA ,hB

21~yB ,ŝB!…

5hA
21~yA ,hB

21
„yB ,hC

21~yC ,s!…!5H~y,s!,

wherey5(yA ,yB ,yC) denotes the state of the complete re-
ceiver. The low-dimensional systemsfA(xA ,sA), fB(xB ,sB),
fC(xC ,sC) constituting the building blocks may be different
systems or three identical copies of the same system. As an
example we consider here the latter case where the APD of
the Rössler system given in the last row of Table I is used for
each block with

sout5h~x,sin!5x310.25sin .

The factor 0.25 is necessary to avoid divergence of the per-
turbed Ro¨ssler systems. This problem is a special feature of
the Rössler system and can be avoided by using dynamical
systems that are stable for all initial conditions. Figure 8
shows an example where the information signal is the spoken
word ‘‘24’’ recorded with a microphone~16 bit resolution,
sampling rate 8000 Hz!. To verify the fact that the transmitter
possesses a hyperchaotic attractor fori50 we have com-
puted the ~ordinary! Lyapunov exponents of this nine-
dimensional system. The result are three positive exponents
~0.112,0.082,0.080!, two vanishing and four negative expo-
nents (20.011,22.86,22.93,23.18). The Lyapunov di-
mension of the hyperchaotic attractor thus isDL56.09.

Similar to the cascaded systems presented here it is also
possible to use low-dimensional chaotic systems in parallel
in order to construct high-dimensional synchronizing sys-
tems. Furthermore, the APD approach allows also to include
~linear! filters in the definition ofh in a way that the trans-
mitted signals fulfills, for example, some given constraints
for the bandwidth of the transmission channel. These gener-
alizations will be discussed in more detail elsewhere.

FIG. 7. General scheme for constructing high-dimensional communication systems. The synchronization of the transmitter and the
receiver is based on the mutual synchronization of~here, three! low-dimensional chaotic systems that constitute their building blocks.

FIG. 8. Numerical simulation of a high-dimensional communi-
cation scheme based on a cascade of three chaotic Ro¨ssler systems.
~a! Information signali (t) 5 spoken word ‘‘24.’’ ~b! Transmitted
signals(t). ~c! Recovered information signali R(t). ~d! Difference
u i (t)2 i R(t)u between the original and the recovered information
signal.
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V. SYNCHRONIZATION OF DISCRETE SYSTEMS

In this section we consider the APD of discrete dynamical
systems and give two examples for encoding schemes that
yield exact reconstructions of the information signal.

Encoding information signals: In general the communica-
tion scheme discussed in Sec. III A can for discrete systems
be summarized as follows:

Transmitter:

x~n11!5 f „x~n!,s~n!…; ~24!

transmitted signal:

s~n!5h„x~n!,i ~n!…;

or

s~n11!5h„x~n!,s~n!,i ~n!…; ~25!

receiver:

y~n11!5 f „y~n!,s~n!…, ~26!

wherex(n),y(n) areN-dimensional vectors andxm ,ym ,s,i
PI with I,IR or I5$0,1,2, . . . ,L21%. As in the continu-
ous case we assume the following.~i! The dynamical system
f has a finite attractor. If the scheme is used for encoding
information this attractor should be chaotic fori50. ~ii ! The
transmitter and the receiver synchronize, i.e.,y(n)→x(n) for
n→`. ~iii ! The informationi can be obtained uniquely from
the equation for s(n); i.e., there exists a function
i (n)5h21

„x(n),s(n),s(n11)…. If the transmitter and the
receiver synchronize the recovered information

i R~n!5h21
„y~n!,s~n!,s~n11!…

converges to the original messagei becausey→x.
Example 1: Continuous variables: In our first example,

the equations of the transmitter read

xm~n11!5amxm~n!1bms~n!~mod 1!

for m51, . . . ,N where the transmitted signal
s(n11)5h„x(n),s(n),i (n)… is given by

s~n11!5s~n!1 (
m51

N

xm~n!1 i ~n!~mod 1!.

The range of the modulo function (mod 1) is@0,1) and
am ,bm are parameters~real numbers! such thatuamu,1 and
bm.1. The first conditionuamu,1 assures the synchroniza-
tion between the transmitter and the receiver, while choosing
bm.1 we construct a hyperchaotic discrete dynamical sys-
tem. In this case the transformationi (n)5h21

„x(n),
s(n),s(n11)… is given by

i ~n!5s~n11!2s~n!2 (
m51

N

xm~n!~mod 1!.

The equations of the receiver are

ym~n11!5amym~n!1bms~n!~mod 1!

for m51, . . . ,N. Using the error variablee5x2y the error
dynamics may be described by

em~n11!5am„xm~n!2ym~n!…~mod 1!,

5amem~n!~mod 1!.

Sinceuamu,1, em→0. Therefore, the transmitter and the re-
ceiver synchronize globally, i.e., for all initial conditions. For
n→` the information is recovered as

i R~n!5s~n11!2s~n!2 (
m51

N

ym~n!~mod 1!.

Note that for this example one can use any transformation
h for s(n11)5h„x(n),s(n),i (n)… provided only that it can
be inverted uniquely fori (n) and yields a chaotic system for
i50.

Example 2: Discrete variables from a finite alphabet: For
our second example we assume that the state variables of the
transmitter and receiver, the information signal, and the
transmitted signal are letters in some finite alphabet
$0,1,2, . . . ,L21%. The equations of the transmitter are

x1~n11! 5 s~n! ~mod L !,

xm~n11! 5 xm21~n! ~mod L !

for m52, . . . ,N. The transmitted signal is given by

s~n11!5a0s~n!1 (
m51

N

amxm~n!1 i ~n!~mod L !.

with a0514, a15129,a2535, a3558, a4524, a55119,
a6525, a7531, a8555, a951, N59, and L5251. The
receiver may be written as

y1~n11! 5 s~n! ~mod L !,

ym~n11! 5 ym21~n! ~mod L !,

with m52, . . . ,N and the recovered information is com-
puted as follows:

i R~n!5s~n11!2a0s~n!2 (
m51

N

amym~n!~mod L !.

The error dynamics is given by

e1~n11! 5 0 ~mod L !,

em~n11! 5 em21~n! ~mod L !

for m52, . . . ,N and it is easy to verify that, independently
of the initial values of the state variables of the receiver, all
error variables equal zero afterN time steps. As a conse-
quence, the recovered information signali R(n) equals the
original signali (n) for all n>N; i.e., the firstN transmitted
digits are arbitrary. Note that in contrast to the previous ex-
ample, here perfect synchronization is achieved after a finite
number of time steps. The main properties of this example
are listed below:

~i! For i50, this model is a pseudorandom generator. The
choice ofL and the other parameters determines the quality
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of the generator. For example, it is well known that it con-
stitutes a ‘‘good’’ random number generator forN555,
L5232, a75a155a235a5451, and am50 for m
Þ7,15,23,54@27#. This example also belongs to the class of
linear self-synchronizing digital data scramblers@17#.

~ii ! Synchronization in this model is very sensitive to ex-
act values of the parameters. Assume that the values of the
parameters of the transmitter and the receiver are the same,
except for one value, sayam . In this case, it is easy to see
that em will never tend to zero. For an information signal
i (n) that is given by a random sequence of integers from the
set$0, . . .,250% we have numerically calculated the normal-
ized cross covarianceCii R

(n) defined as

CXY~n!5

(
k

@X~k!2X̄ #@Y~k1n!2Ȳ #

A(
k

@X~k!2X̄ #2(
k

@Y~k!2Ȳ #2

.

Figure 9~a! showsCii R
(n) versusn for the case that all the

values of the parameters in the receiver are the same as in the

transmitter, except fora5 . The original informationi (n) and
the recovered messagei R(n) are practically uncorrelated. To
demonstrate the dependence on parameter mismatch Fig.
9~b! showsCii R

(0) versusa5 . The values of the cross co-
variance are very small except for the case where the param-
eters of the transmitter and the receiver are exactly the same
(a55119).

~iii ! The initial conditions of the state variables of the
transmitter and the receiver can be chosen completely at ran-
dom. If two initial conditions are different, then the transmit-
ter generates two different signalss1(n) and s2(n) for the
same informationi . Let us denote the initial conditions for
s1 and s2 by x1(0) and x2(0), respectively. Figure 9~c!
showsCs1s2

(n) for x4
1(0)2x4

2(0)51 and xm
1 (0)5xm

2 (0),

mÞ4. In general, the transmitter may form as many different
transmitted signals for the same information as different ini-
tial conditions~orbits! exist. Therefore, a given message may
be encoded in this case inLN525110 different ways.

Furthermore, this example may also be written as

s~n!5F„s~n21!,s~n22!, . . . ,s~n2N!…1 i ~n!

and the receiver recovers the information then as

i R~n!5s~n!2F„s~n21!,s~n22!, . . . ,s~n2N!….

In general any functions(n)5F„s(n21),s(n22), . . . ,
s(n2N),i (n)… that generates a chaotic time series fori50
and that is invertible with respect to i with
i5F21

„s(n),s(n21),s(n22), . . . ,s(n2N)… may be used
in this way for encoding and decoding messages@26#.

VI. CONCLUSION

In this paper we have discussed a general method for
constructing~high-dimensional! synchronized chaotic sys-
tems. Furthermore, two improved encoding-decoding
schemes were investigated that are both based on~chaotic!
synchronization. The first encryption method allows us to
recover the information signal exactly, and the second ap-
proach offers new features to design more robust communi-
cation systems based on synchronization. Numerical, experi-
mental, and analytical examples of continuous and discrete
systems were presented to illustrate the basic ideas and to
indicate also possible directions of future research. For the
~discrete! encryption methods we expect applications, for ex-
ample, inspread spectrum communication@28# and secret-
key cryptography@29#. The autosynchronization used for the
second encryption method may also be applied to system
identification and parameter estimation.
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FIG. 9. Properties of the discrete communication scheme using
variables from a finite alphabet~example 2!. The values of the
nonvanishing parameters area0514, a15129, a2535, a3558,
a4524, a55119, a6525, a7531, a8555, and a951 where
N59 andL5251. The information signali (n) is given by a ran-
dom sequence of integers from the set$0, . . .,250%. ~a! Cii R

(n) vs
n. The values of the parameters in the receiver are the same as in
the transmitter, except fora6526. ~b! Cii R

(0) vsa5 . The values of
the other parameters in the receiver are the same as in the transmit-
ter. ~c! Cs1s2

(n) for the same information but slightly different ini-
tial conditions. All values of the parameters in the receiver are the
same as in the transmitter.
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